
Signatures Technical
Details

There are various signature databases, one for each platform. This speeds up
the scanning process, since it makes no sense scanning for a x64 signature in a
x86 portable executable. Nevertheless, there's also a multiplatform database
called "PLATFORM_INDEPENDENT". This database contains signatures that are valid
on all platforms. For instance, a .NET obfuscator could (it's not a rule, just
a possibility) have the same signature on x86, on x64, on IA64 and on ARM
(basically on every platform which supports .NET): keep in mind that .NET
executables are not always x86 executables, they can also be compiled
specifically for x64, IA64 or ARM. All other databases are named by the
platform they represent based on the Machine field in the PE File Header, e.g.:

• IMAGE_FILE_MACHINE_I386 (x86)
• IMAGE_FILE_MACHINE_AMD64 (x64)
• IMAGE_FILE_MACHINE_IA64 (IA64)
• etc.

The database format is XML. I chose this format instead of the old ini-like
format for various reasons:

1. The parsing is faster.
2. Adding new fields is easy, so changing the database schema isn't drastic.
3. The format is more transparent than a proprietary (created by me) format

would be.

The third point implies that all signatures are public, it doesn't make much
sense either that every program has its own internal database. The XML schema
of a database looks something like this:

<?xml version="1.0"?>
<SIGNATURES>
 <ENTRY>
 <NAME>Name of the signature</NAME>
 <COMMENTS>Eventual technical comments</COMMENTS>
 <ENTRYPOINT>1A2B??3C4D</ENTRYPOINT>
 <ENTIREPE>5F6E7A8B</ENTIREPE>
 </ENTRY>
</SIGNATURES>

SIGNATURES is the XML root element, there's only one element with this name.

ENTRY is the root element for a signature. If a database contains 10
signatures, there will be 10 ENTRY elements, one for each signature.

NAME is the name of the current signature.

COMMENTS is a field designed to contain (only) technical information about the
protection / packer / crypter / compiler referred by the current signature.
Please, don't use this field to include other kind of information.

ENTRYPOINT and ENTIREPE, these two are the actual signatures of the current
entry. One of this two fields can be empty. In already existing signature

databases there's only one signature and a following parameter which tells the
scanner if that signature is to confront only with the entry point or to search
in the entire executable. I could have done things in the same way, instead I
chose to put two distinct tags. The reason is that the same entry could contain
an entry point signature but also a signature which could be anywhere in the
portable executable. In the case of a deep scan, the matches of the signature
to search in the entire executable will be added to the entry point signature
matches. This means that if an entry point signature is 20 bytes long and
produces 20 matches and an entire PE signature is 40 bytes long and produces 38
matches, the final result will be of 58 matches. 58 matches for just one entry
is better than writing two separate entries, one that scores 20 and the other
that scores 38. It's just more effective.

As you may have already noticed, the signature length does not always equal the
number of matches. That's because wildcards in signatures don't increase the
score. Let's take for instance the signature: AABB??DD. This signature is 4
bytes long, but only produces 3 matches. That's also the reason why signatures
shouldn't end with wildcards, since they are meaningless at the end of a
signature, e.g.: AABBCCDDEE?? should be written AABBCCDDEE, since wildcards
exist only to link static bytes, without a static byte following they are
meaningless. The software deletes wildcards at the end of a signature
automatically, so there's no need to stress further on this point.

The convention I adopted is to store signatures without spaces (to reduce the
database size) and in upper-case (to give a style unity and to give the chance
to speed up the conversion from string to numbers).

My only regret about the database format is that the scanning process would
have been way faster (or let's say optimized) if in addition to the entry point
and entire PE signature, I had added specific location tags like:
<CODESECTION>, <ENTRYPOINTSECTION>, <IMPORTEDDLL> etc. The reason I couldn't do
this is that it would have increased too much the database complexity and it
would have made it impossible to look after collisions (too much computing time
necessary).

Daniel Pistelli

